

1ST SYMPOSIUM ON INNOVATIVE THERAPIES IN HEMATOLOGY

Molecular bases of congenital dyserythropoietic anemias

Achille Iolascon, MD, PhD Department of Molecular Medicine and Medical

Biotechnology University "Federico II" of Naples , Italy achille.iolascon@unina.it

Avellino, Hotel de la Ville March 30-31, 2023

NO CONFLIT OF INTEREST TO DECLARE

Congenital

Dyserythropoietic

Anemias

- CDAs are Mendelian diseases affecting the normal differentiation-proliferation pathway of the erythroid lineage
- They belong to a subtype of bone marrow failure syndromes characterized by monolineage involvement and morphological abnormalities in erythroid precursor cells
 Erythroid hyperplasia with

Clinical findings of CDA-s

Anemia

Jaundice

Splenomegaly

Iron overload

Differential diagnosis

Differential diagnosis

Pathogenic mechanisms of CDA

- a. The pathogenic mechanisms of CDA II, CDA III, and probably CDA lb could be due to **deregulation** of mechanisms involved in **cell division**
- b. The pathogenic mechanisms of transcription factor-related CDA, as well as of CDA la-lb could be due to impairment of mechanisms involved in DNA synthesis and chromatin assembly

Traditional diagnostic workflow for CDAs

Williams Hematology, 9th Edition, Chapter 39 by A. Iolascon - McGraw-Hill

Different subtypes of CDAs

Table 1. Characteristic features of different types of congenital dyserythropoietic anemia

CDA type	I	II	III familial	III sporadic	Variants
Inheritance	Autosomal- recessive	Autosomal-recessive	Dominant	Variable	Autosomal-dominant or X-linked or recessive
Cases reported	> 300	> 450	2 families	< 20	~ 70
Bone marrow morphology (light microscopy)	Abnormal chromatin structure, chromatin bridges	Bi-nuclearity Multinuclearity of mature erythroblasts	Giant multinucleated erythroblasts	Giant multinucleated erythroblasts	CDA I-like CDA II-like others
BM EM findings	"Spongy" hetero- chromatin, invagination of cytoplasm into the nucleus	Peripheral cysternae beneath the plasma membrane	Clefts in hetero chromatin, auto- phagic vacuoles, intranuclear cisternae	various	various
Mutated Gene	CDAN1 C15ORF41	SEC23B	KIF23	Unknown	KLF1 GATA-1 unknown
Associated dysmorphology/orga n involvement	Skeleton	Variable, rare	Monoclonal gammopathy, myeloma, angioid streaks	Variable	CNS others
	CDA type I	CDA type II	CDA type III	CDA type III	CDA variants
			familial	sporadic	olascon A et al. Blood 2013

Main features of CDA I patients

 Clinical features: Anemia (often macrocytic) with neonatal appearance; jaundice; splenomegaly; common complication: hemosiderosis
 Morphologic body abnormalities (20%): skeletal malformations, syndactyly in hands or feet, absence

of nails, or supernumerary toes

 Morphology: Megaloblastoid erythroid hyperplasia; nuclear bridges (BM)

 \rightarrow EM: spongy-appearing nuclei and invagination of the cytoplasm in the nucleus

Inheritance: Autosomal recessive

Locus: $15q15.2 \rightarrow CDAN1$ (CDA Ia) Locus: $15q14 \rightarrow C15ORF41$ (CDA Ib)

Therapy: - Transfusion

- IFN
- Iron chelation
- BMT
- Gene therapy ?

Main features of CDA II patients

- Clinical features:
- Average age of onset symptoms: 3.7 ± 0.6 y
- Mean age of diagnosis: 22.2 ± 1.7 y
- Normocytic mild anemia: **Hb 9.6** \pm 0.2 g/dL with **MCV 87.3** \pm 1.0
- Reticulocyte index: 1.7 ± 0.1
- Mean serum ferritin: 464.8 ± 55.9 ng/mL
- Splenomegaly: 102/122, 83.6% of patients
- Transfusion dependency: 25/126, 19.8% of patients
- Biochemical features:
- Hypoglycosylation of band 3 at SDS-PAGE: **95.1% of patients**
- Morphology: erythroid hyperplasia;

bi-nucleated erythroblasts > 10%

- → EM: double-membrane appearance
- <u>Inheritance</u>: Autosomal recessive

Locus: 20p11.23 → **SEC23B**

- Therapy: Transfusion
 - Iron chelation
 - Splenectomy
 - Luspatercept
 - BMT
 - Gene therapy ?

CDA variants

Disease symbol	Gene Inheritance	Main clinical features	Bone marrow morphological features
CDA IV	<i>KLF1</i> Autosomal dominant	Hemolytic anemia, generally severe, with normal or slightly increased reticulocyte count, and markedly elevated fetal hemoglobin levels	Erythroid hyperplasia with bi- or multi-nucleated erythroblasts; immature erythroid progenitors with atypical cytoplasmic inclusions, invagination of the nuclear membrane, and marked heterochromatin
	GATA1		Erythroblasts with megaloblastic features, bi- and multi- nucleation, and nuclear irregularities;
XLTDA	X-linked recessive	and mild-to-severe anemia	small dysplastic megakaryocytes with signs of
			incomplete maturation and reduced number of alpha granules
MJDS	<i>LPIN2</i> Autosomal recessive	Hypochromic microcytic anemia; chronic recurrent multifocal osteomyelitis and inflammatory dermatosis	Microcytosis and dyserythropoiesis
EIEE50	CAD Autosomal recessive	Autism, developmental delay, and generalized epilepsy; mild CDA II-like anemia with marked anisopoikilocytosis and abnormal glycosylation of the erythrocyte proteins band- 3 and RhAG	Erythroid hyperplasia with dyserythropoiesis, bi- and tri- nucleated erythroblasts, prominent cytoplasmic bridging
-	VPS4A De novo autosomal dominant	Microcephaly, hypotonia, global developmental delay, structural brain abnormalities, cataracts; hemolytic anemia	Dyserythropoiesis with bi-nucleated erythroblasts and cytoplasmic bridges
-	ALAS2 X-linked dominant	Macrocytic anemia with iron overload in female individuals	Erythroid hyperplasia with dyserythropoiesis; rare erythroblasts with siderotic granules (no excess iron or sideroblasts)
-	COX4I2 Autosomal recessive	Exocrine pancreatic insufficiency, dyserythropoietic anemia, and calvarial hyperostosis	Erythroid hyperplasia with dyserythropoiesis
MEVA	<i>MVK</i> Autosomal recessive	Mevalonate kinase deficiency associated to CDA II-like anemia	CDA II-like morphological abnormalities of erythroblasts

CDA IV, CDA type IV; XLTDA, X-linked thrombocytopenia with or without dyserythropoietic anemia; MJDS, Majeed syndrome; EIEE50, early infantile epileptic encephalopathy-50; MEVA, mevalonic aciduria.

New diagnostic workflow for CDA

Iolascon A et al. Blood 2020,

Genetic and phenotypic heterogeneity of H-RBCDs

\checkmark > 100 genes associated to RBCDs

Background

ce Pin

ge

Overlapping clinical features

NGS-based genetic testing of rare hereditary anemias

 Several targeted-NGS panels for differential diagnosis of HA have been generated:

N° genes	N° patients	N° families	HA subtypes	Diagnostic yield (%)	Reference
33	57	57	CDA; DBA; Sideroblastic Anemia; RBC enzymatic defects	38.6	Roy NB, et al. BJH 2016
40	10	10	RBC membrane defects; CDA; RBC enzymatic defects	90.0	Del Orbe Barreto R, et al. Int J Lab Hematol 2016
28	15	15	RBC membrane defects; RBC enzymatic defects	86.7	Agarwal AM, et al. BJH 2016
600	10	3	RBC membrane defects	100.0	He Y, et al. Gene 2017
71	74	62	RBC membrane defects; CDA; DBA; RBC enzymatic defects	64.9	Russo R, et al. AJH 2018
43	59	59	RBC membrane defects; RBC enzymatic defects; HA modifiers	84.7	Choi HS, et al. Orphanet J Rare Diseases 2019

 The overall diagnostic yield obtained by these panels ranges between 35% and 65%

NGS-based genetic testing of HA

 The multi-gene approach modified the original diagnosis in 45.8% of patients (non-matched phenotype-genotype)

 81.8% of non-matched patients were clinically suspected to suffer from CDA

> 36.4% of CDA patients within our cohort exhibited mutations in PKLR gene → overlapping phenotypes among these disorders

TABLE 3 Clinical features of CDA patients conclusively diagnosed as PK deficiency

	RP1_13	RP1_23	RP1_58	RP1_59	RP1_72	RP1_73	RP1_75	RP1_80
Age (years)	1.4	5.2	2.0	1.7	7	0.8	1.6	14
Onset symptoms (years)	At birth	Neonatal	Neonatal	At birth	4	At birth	At birth	At birth
Gender	Male	Female	Male	Male	Female	Female	Male	Male
Ethnicity	Turkish	Turkish	Colombian	Turkish	Italian	Turkish	Hungarian	Venezuelan
Complete blood count RBC (10 ⁶ /µL) Hb (g/dL) Ht (%) MCV (fL) MCH (pg) MCHC (g/dL) RDW (%) PLT (10 ³ /µL) Retics % Retics abs count (x10 ³ /µL) Transfusion rate Bone marrow examination	2.1 6.8 18.0 104.9 32.5 - - 387.0 0.6 12.8 8/year Erythroid hyperactivity, 10% double nucleated normoblasts (asymmetric nuclei)	2.9 7.7 23.4 80.6 26.1 32.4 13.7 287.0 0.1 3.8 7–8/year Hypercellular with megaloblastic changes in erythroid cells	2.6 7.6 21.6 82.0 29.0 35.0 14.0 361.0 3.2 83.5 25/year	2.9 7.9 23.3 81.2 28.1 34.4 13.2 276.0 1.8 51.5 12/year Erythroid hyperactivity, megaloblastic elements (bi- and multi-nucleated with internuclear bridges)	3.2 9.6 29 89.6 33 36.8 - 295 7.2 23.3 - Erythroid hyperactivity with dyserythropoiesis, mostly bi- and multi-nucleated with internuclear bridges	1.7 5.5 15.8 90.1 31.4 34.9 14.9 284 2.0 35.2 6/year Normoblasts with double nuclei and internuclear bridges	1.7 6.1 17.5 103.6 35.3 34.3 16.7 362 8.56 144.7 10/year Hypercellular with megaloblastic changes and bi-nucleated normoblasts	2.7 9.5 32 117.8 35.2 29.9 18.2 1010 18.2 215.0 12/year Erythroid hyperactivity with dyserythropoiesis
Laboratory data Total bilirubin (mg/dL) Unconjugated bilirubin (mg/dL) Ferritin (ng/mL)	1.7 0.5 554	1.9 1.5 2554	3.7 3.1 1042	6.1 5.4 389	5.6 5 132	3.5 3.1	2.2 2.1 198	7 6.3 238
PKLR molecular analysis HGVS (coding ^a ; protein; status)	c.1349A>G; p.Asp450Gly; Hom	c.1117-1G>C; Hom	c.1116 + 2T>G; Hom	c.67_68deITA; p.Leu23Cysfs* 55c.287C>A; p.Pro96Gln; Comp het	c.1492C>T; p.Arg498Cysc. 994G>A;p. Gly332Ser Comp het	c.353A>G; p.Asn118Ser; Hom	c.1594C>T; p.Arg532Trpc. 1529G>A; p.Arg510Gln; Comp het	c.1528C>T; p.Arg510Ter; Hom

Hom, homozygous; Comp het, compound heterozygous.

^aReference Transcript ID: NM_000298.

- Bone marrow features mostly resembling those of CDA I patients
- TD patients → enzymatic assay is not reliable

Different sub-types of congenital dyserythropoietic anemias

- CDA patients enrolled by the Medical Genetics Unit of Naples:
 - 271 affected subjects

Iron overload in CDAs

CDA I and II are hallmarked by **ineffective erythropoiesis**, **iron overload**, and **reduced expression of** hepatic hormone **hepcidin**

Physiopathology of CDAs (systemic level)

✓ **EPO** is not able to increase the production of RBCs

Polychromatic erythroblasts are the main source of ERFE in human and mice

Williams Hematology, Nineth Edition, Chapter 39 by A. Iolascon - McGraw-Hill

Increased levels of ERFE-encoding FAM132B in patients with Congenital Dyserythropoietic Anemia type II

**p<0.0001; *p<0.05 vs HC group

- CDAII patients exhibit over-expression of ERFE at both gene and protein level
- β-thalassemia (BT)-intermedia patients, exhibiting iron overload likewise for CDAII patients, show over-expression of ERFE

These data suggested that the marked increased ERFE expression observed in both CDAII and BT-intermedia patients is mainly due to the ineffective erythropoiesis

SEC23B Loss-of-Function Suppresses Hepcidin Expression by Impairing Glycosylation Pathway in Human Hepatic Cells

Table 1. CDA II patients enrolled in the study.						
Analysis	Units	Chronic	Anemia	<i>p</i> -Value ⁺	Reference	
		$\begin{array}{l} \mbox{Mild} \\ \mbox{Hb} \geq 10.0 \ \mbox{g/dL} \end{array}$	Moderate/Severe Hb < 10.0 g/dL		Range	
N		10	18			
Gender	male/female	3 (0.3)/7 (0.7)	10 (0.6)/8 (0.4)	0.19	-	
Age at sampling	years	28.6 ± 4.3	17.0 ± 5.7	0.19	-	
Hemoglobin	g/dL	10.9 ± 0.2	8.6 ± 0.3	0.00001	11.5-15.5	
ARC	$\times 10^3 / \mu L$	51.5 ± 6.0	77.7 ± 14.7	0.21	20-90	
TSAT	%	90.5 ± 6.5	76.7 ± 4.6	0.09	15-39	
hERFE	ng/mL	40.5 ± 11.9	43.2 ± 9.3	0.86	0.1-3.8	
EPO	mIU/mL	51.6 ± 11.1	151.1 ± 27.4	0.01	3.1-14.9	
sTfR	mg/L	3.8 ± 0.5	4.2 ± 0.5	0.59	0.78-1.89	
Hepcidin	nM	5.6 ± 2.3	6.2 ± 1.9	0.85	male: 40.10	
					female: 23.27	
Hepcidin/ferritin	-	0.02 ± 0.01	0.03 ± 0.01	0.46	-	
Ferritin	ng/mL	559.7 ± 234.4	369.2 ± 115.2	0.42	22.0-275.0	
Ferritin/age §	-	20.5 ± 6.9	57.9 ± 19.9	0.21	-	

ARC, absolute reticulocyte count; TSAT, transferrin saturation; sTfR, soluble transferrin saturation; EPO, erythropoietin; hERFE, human erythroferrone. Quantitative variables data are presented as mean \pm SEM. Qualitative variables data are presented as n (%)/n (%); [†] Student's t-test for quantitative unpaired data; chi-square tests for categorical data. [§] Normalization of ferritin using "Ferritin level/dosage age ratio," as described by [27].

ERFE levels were inadequate to explain hepcidin suppression in CDA II patients

Rosato BE, Marra R, D'Onofrio V, Del Giudice F, Della Monica S, Iolascon A, Andolfo I, Russo R. IJMS 2022.

- 28 patients with iron overload (TSAT > 45%)
- Patients stratified according to the degree of anemia:
 - i. mild (Hb \geq 10.0 g/dL)
 - ii. moderate/severe (Hb < 10.0 g/dL)

Overall patients exhibited

- reduced hepcidin
- high ferritin levels
- increased EPO

However, no significant correlation between ERFE, hepcidin and EPO levels was observed

SEC23B Loss-of-Function Suppresses Hepcidin Expression by Impairing Glycosylation Pathway in Human Hepatic Cells

- Biochemical studies have shown that CDAII is associated with reduced glycosylation activity
- Erythrocytes presented a band 3 that was thinner than usual and also migrated slightly faster on SDS-PAGE
- Abnormalities in SEC23B disturb the endoplasmic reticulum to Golgi trafficking and affect different glycosylation pathways

Defective glycosylation as pathogenetic mechanism of CDAII

This defective glycosylation is **not confined** to **erythrocyte** but is also to **hepatic** cells

De Franceschi et al. Exp Hematol 1998 Iolascon et al. Haematologica 2009 Zhao, N et al. Biochemistry 2013

Hemoglobin level and splenectomy

$\checkmark\,$ Hb level in 19 and 35 patients affected with CDA-II and HS respectively

SEC23B Loss-of-Function Suppresses Hepcidin Expression by Impairing Glycosylation Pathway in Human Hepatic Cells

GAPDH

The silencing of SEC23B impaired activation of BMP/SMADs signaling pathway

 \checkmark

 \checkmark

Acknowledgments

Medical Genetics Lab CEINGE Roberta Russo Immacolata Andolfo Barbara Eleni Rosato Roberta Marra Federica Del Giudice Gianna Gargiulo Vanessa D'Onofrio Federica Maria Esposito Antonella Nostroso Anthony Iscaro

Medical Genetics Unit AOU Federico II Antonella Gambale

External collaborators

Ospedali Galliera, Genova Gian Luca Forni, Valeria Pinto University of Verona Lucia De Franceschi, Alessandro Mattè University of Milan Maria Domenica Cappellini, Irene Motta Hacettepe University, Ankara Sule Unal

